
JOURNAL OF SYSTEMS INTEGRATION 2014/2 28

LISp-Miner Control Language
Description of scripting language implementation

Milan Šimůnek

University of Economics Prague, Faculty of Informatics and Statistics, Czech Republic

simunek@vse.cz

Abstract: This paper introduces the LISp-Miner Control Language – a scripting language for the LISp-
Miner system, an academic system for knowledge discovery in databases. The main purpose of this
language is to provide programmable means to all the features of the LISp-Miner system and mainly
to automate the main phases of data mining – from data introduction and preprocessing, formulation
of analytical tasks, to discovery of the most interesting patterns. In this sense, the language is a
necessary prerequisite for the EverMiner project of data mining automation. Language will serve other
purposes too – for an automated verification of the LISp-Miner system functionality before a new
version is released and as an educational tool in advanced data mining courses.

Key words: Knowledge discovery in databases, automation, EverMiner, LISp-Miner, scripting
language, Lua

1. Introduction
The goal of this paper is to introduce the LISp-Miner Control Language (LMCL) and describe its
implementation. LMCL opens an access to LISp-Miner system core objects and functionality to be
used on a higher level of abstraction in user-created scripts written in an understandable programming
language. Its syntax allows for all the common programming concepts (as variables, expressions
evaluation) and execution control constructs (if-then, loops or functions calls). Scripts are executed
automatically and could perform sequences of operations much faster than if initiated manually
through user interface. Thus, an algorithm could be implemented in LMCL syntax to automate some
data mining process phases (and possible all of them).

There are several unique features implemented in the LISp-Miner system, as mentioned later in this
paper and in more details in cited references. The most important of them is a rich syntax of several
types of mined patterns and theoretically well-founded inclusion of domain knowledge across the
whole data mining process. Those features are becoming available through LMCL implementation and
together they provide a necessary prerequisite for achieving the goal of data mining automation.

Data mining process automation was included in the well known paper “10 Challenging Problems in
Data Mining Research” (Yang&Wu, 2006) back in the 2006. There are mentioned challenges
regarding automation of data mining operations, under the problem number 8, together with a need for
special care that should be given to the pre-processing phase and data cleaning namely. Paper
concluded that significant costs saving could be implied from successful mastering of automation.

On the other hand, we are well aware that the whole problem is much wider than just crawling through
data. There are other business-oriented steps that pre-cede or follow-up the actual data mining
analysis. These are hardly to automate and possibly not suitable for automation at all (e.g. a problem
identification and definition from managerial point of view, trust establishment between data owner and
data analyzer or practical deployment of knowledge obtained through data mining analysis).
Nevertheless, there are clear benefits from automation of computer-aided phases of data mining – be
it speed-up in time of analysis, an automatic deployment of know-how and best-practices or a new
value added through permanent update of known patterns.

Data mining automation is a long term research goal of the EverMiner project (Šimůnek&Rauch, 2011),
(Rauch, 2012a). It is built upon the LISp-Miner system platform (see the next section) and on theoretical
results in areas of formalization of domain knowledge, formulation of analytical questions, observational
calculi and synthesis of new knowledge from found patterns (Rauch, 2011), (Rauch, 2012b),
(Rauch&Šimůnek, 2012). The idea of the EverMiner is inspired by the project GUHA80
(Hájek&Havránek, 1982, Hájek&Ivánek, 1982) that has been but never realized. The architecture,
particular software, theoretical components and the principles of the mining process management
used in EverMiner differ from that used in GUHA80. However both projects are based on the
application of GUHA data mining procedures (see later).

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 29

This paper is organized as follows. Two basic stones the LMCL was built upon – LISp-Miner system
and Lua scripting language – are shortly described in the next section and section 3 respectively. A
general concept of implemented solution, detailed description of LMCL language syntax and of the
way it connects scripts to LISp-Miner Core is presented in section 4. The LM Exec module to interpret
scripts is described in section 5. A special section 6 was dedicated to an automatically generated
programmer’s documentation to LMCL. Achieved results and a proof of the concept in terms of the
EverMinerSimple demo example is in section 7. They are other existing languages used for data
mining and for algorithms description mentioned in section 8. Finally, a summary ends this paper.

2. LISp-Miner System
The LISp-Miner system is an academic system used mainly for data mining research and teaching.
The system is developed at University of Economics, Prague since 1996. It is freely available at
http://lispminer.vse.cz and is used at several universities in Czech Republic, Finland, France and USA
and for real data analyses. For more details see (Šimůnek, 2003). LISp-Miner consists now of ten data
mining analytical procedures plus thirteen other modules supporting e.g. the Business understanding
and Data preprocessing phases of the data mining process, parallel processing or communication with
other systems.

The system is based on many decades of related research of the GUHA method, an original Czech
method of exploration analysis. Theoretical foundations were published in books and papers since
1960’s – see e.g. (Hájek et al., 1966), (Hájek, 1974), (Hájek&Havránek, 1978), (Holeňa, 1996),
(Rauch, 2005), (Rauch, 2009), (Piche&Turunen, 2010), (Rauch&Šimůnek, 2008). A complex overview
could be found in (Rauch, 2013) and a summary of the GUHA method in (Hájek et al., 2010).
There are several types of patterns the LISp-Miner could mine for: 4ft-association rules – we would
like to stress that we do not mine for simple association rules derived from shopping baskets in the
sense of (Agrawal et al., 1993), but for more complex types of patterns (Rauch&Šimůnek, 2005) –
action rules (Rauch&Šimůnek, 2009), conditional histograms of single attribute (Hájek et al., 2010),
conditional frequencies of two multi-categorical attributes (Lín et al., 2005), decision- and exploration-
trees (Berka, 2011), clusters or even for pairs of patterns trying to compare two subsets of original
data (so called set-difference rules). All types of patterns use a rich syntax of so called Derived
Boolean Attributes – automatically generated conjunctions and disjunctions of Basic Boolean
Attributes. Basic Boolean Attribute is an expression A(α) where A is an attribute and α is a subset of
its possible values, again automatically generated. An Basic Boolean attribute A(α) is true in a row of
analyzed data matrix if the value of A in this row belongs to α – for details see (Rauch&Šimůnek,
2005). This is an important feature which distinguish the LISp-Miner from most of other systems where
only expressions of A(a) are allowed, where a is one of possible values of A.

Highly optimized algorithms allow for mining of these automatically constructed complex patterns in a
reasonable time. Parallel processing of tasks is available through distributed grid or cloud
(Šimůnek&Tammisto, 2010). Achieved theoretical results based on observational calculi and logic of
association rules namely, for details see (Rauch, 2010), were subsequently implemented and used to
filter-out already known facts from the found patterns (Rauch&Šimůnek, 2011).

Syntactical richness, together with LISp-Miner data preprocessing features allow for wide range of
interesting patterns to be automatically found in analyzed data. We would like to mention, that LISp-
Miner is a closed system from point of view of implemented objects, analytical procedures or
operators. This approach makes “tight” code and thorough optimizations within the whole system
possible. The LMCL proposed here opens these features to everybody to build something upon them
on a higher level of abstraction.

3. Lua Scripting Language
First of all, an option to develop an own scripting language was considered. It has become clear that
this is a no-way solution due to time and effort it would have been necessary to spend on such an
adventure. Moreover, the final result would not be on par with already existing languages and valuable
developers capacity would have been blocked in maintenance of just another weird syntax language.

Therefore existing scripting languages with a possibility to be embedded by a C++ application (such
as LISp-Miner) were considered to base the LM Control Language syntax on them. Two have
emerged as run-off competitors – Lua (Ierusalimschy et al., 1996) and JavaScript (based on the
ECMA-262 standard, see (Ecma), respectively its Google Chrome V8 Engine implementation (V8).

Finally, the Lua was chosen based on history of its development, more traditional syntax (with
probably steeper learning curve and understandability of code), easy installation of development

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 30

platform, more straightforward embedding of LISp-Miner functionality into script syntax and last but not
least on learning materials provided by the Lua community.

Lua (according to its official pages) is a powerful, fast, lightweight, embeddable scripting language.
Lua combines simple procedural syntax with powerful data description constructs based on
associative arrays and extensible semantics. Lua is dynamically typed, runs by interpreting bytecode
for a register-based virtual machine, and has automatic memory management with incremental
garbage collection. For more detail see http://www.lua.org.

Moreover, Lua is free and compact. Its language is widely used, was primary developed for
embedding in different types of applications and it is supported by a large community of developers.
Its syntax is relatively simple (Ierusalimschy et al., 2006), so script-authors could concentrate on theirs
algorithms implementation instead.

Lua has been chosen even despite of unavailability of objects in it (it is based on the pure C not C++),
compared to JavaScript natural integration of objects and classes. This drawback was overcome with
concept of tables and meta-tables in Lua (Ierusalimschy, 2013). Tables and meta-tables are a neatly
way of integration of objects and classes into scripts without any complications to its syntax. This is
also demonstrated in examples and in recommendations found on Lua community pages.

4. LISp-Miner Control Language
The purpose of the LISp-Miner Control Language (LMCL) is to allow for calling of LISp-Miner internal
functions and accessing user’s meta-data in an automated manner. The main goal is to provide a
script-like mean to import data, to preprocess them, to formulate reasonable analytical tasks, to
process those tasks and finally to digest results (found patterns) and to report only the interesting ones
to the user. In this sense, it is a necessary prerequisite for the automation of data mining process in
realm of the EverMiner.

The basic concept of the LM Control Language integration into the LISp-Miner system is in Fig. 1.

Meta-data

LISp-Miner Core

Task
processing
modules

LM ProcPooler
LM GridPooler

Object
Layer

LM Classes
and high-
level

Functions

LM Exec
module

includes Lua
interpreter
(lua52.lib)

LM Control
Language
script

Analyzed
Data

Execution
Log

read-
only

Fig. 1 – LISp-Miner Control Language conceptual schema

There is a LM Control Language script (which could further include several other scripts and libraries)
on the input. This script is executed by the LM Exec module (see later) using the Lua language
interpreter (Ierusalimschy et al., 1996), of the 5.2 version currently.

The main LISp-Miner Core object classes and high-level functions were embedded into the Lua
interpreter, so were calls to the main task processing modules LM ProcPooler and LM GridPooler.
Therefore the LMCL scripts have access to the LISp-Miner internal object model to manipulate with
meta-data structures (like discretized attributes, analytical tasks settings or found patterns) and to call
functions (like to automatically create equi-frequent discretize bins for values in a given database
column). Specialized modules for processing analytical tasks could be called from within scripts with

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 31

option to choose between the parallel processing on multiple cores of the local computer (LM
ProcPooler) or distributed parallel processing on computer grid or cloud (LM GridPooler).

The script execution is logged, so the whole history of execution is available. The log is simultaneously
displayed in the LM Exec window to interactively inform users about the progress of the execution
(including possible warnings or errors). He or she could pause or stop the execution as necessary.

There were two main problems identified design phase – how to allow the Lua script syntax to use the
LISp-Miner objects and functions (Lua to LM Exec binding) and how to expose the LISp-Miner to the
LM Exec module (LM Exec to LISp-Miner Core binding).

Though both the problems are interconnected, they were solved separately due to their nature and
different levels of familiarity and therefore self-confidence to find out a solution on the LISp-Miner part
(seventeen years of in-house development) and on the part of Lua (initially, with only limited
knowledge and practically no experience with it) – see subsection 4.2.

4.1. Language Syntax
LMCL follows Lua naming conventions as far as they were identified in Lua examples. Names of
variables, namespaces, functions, methods and named-function-parameters start with lower letters.
Only the names of classes, theirs properties and predefined global constants start with capital letters.
Names compounded from two or more words follow the “camel” convention of starting capital letters
for the second and every other word.

There is an example of LMCL script syntax in Fig. 2. An array of all database tables in analyzed data
database is retrieved (line 28) and individual tables are iterated using a for-loop (line 31). Each table is
initialized (line 36) and presence of primary-key is checked and updated if necessary (lines 38 to 47).
Data caching is enabled also to speed-up future analytical task processing (line 54). There are also
examples of user-defined messages to be included in the execution log (lines 24, 33 and 50–51).

Fig. 2 – LMCL script syntax example

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 32

LMCL implementation follows Lua convention of namespaces. All the LISp-Miner related functions and
classes are placed in the lm namespace. It is moreover subdivided into additional namespaces as is
shown in Fig. 3.

There is lm.database namespace containing the analyzed data related functions, namely the
importTXT function to import text/CSV files. There is the lm.metabase namespace for functions to
create and associate of a meta-data database (storing data preprocessing parameters, analytical
tasks settings and found patterns). Classes and functions for data exploration (e.g. to collect
information about database tables and columns of analyzed data) are in the lm.explore
namespace. Preprocessing and data transformations related classes and functions are in the
lm.prepro namespace. The most important classes are categorized Attributes and its
Categories. Finally, there is lm.tasks namespace for classes and function for analytical tasks
settings and browsing results (found patterns). This namespace is divided into two sub-namespaces
for more clarity – lm.tasks.settings and lm.tasks.results. Respective classes for these two
sub-namespaces (for the 4ft-Miner procedure) are shown in Fig. 4.

There are unified name prefixes of set- and get- for functions reading and setting properties of
objects. The setter function has a single unnamed parameter of the same type as the property it is
modifying. Of the same type is the return of a corresponding getter function.

dataColumn.getName() -- returns column name as string
attribute.setName("age") -- changes name of the attribute

Unnamed parameters for function calls are used only for setter functions and for few other simple
functions (mainly the logging functions from the lm namespace). In all other cases the named
parameters are used for enhancing readability and clarity of the script codes.

lm.database

importTXT

associate
open/close
reload

lm.metabase

lm.explore

DataTable

DataColumn

lm.prepro

Attribute

Category

AttributeGroup

parent

lm.tasks

Task

lm

log
sleep

TaskGroup

HypothesisGroup

lm.tasks.results

Bitstring

X-Category

getRootAttributeGroup

Hypothesis

Fig. 3 – Namespaces and basic classes

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 33

A simplified Hungarian notation is used to identify four basic types of named parameters.

nTaskSubTypeCode -- an integer number expected
dParamP -- a floating-point number (double

precision) is expected
bForceRunFinished -- a Boolean value is expected
pParentGroup -- a reference to an LMObject is

expected

A special function name prefix prepare- is used to identify functions or methods returning an array of
objects as a table data-type. Some prepare- functions allow passing an optional parameter to filter
only some objects from the internal array (e.g. only tasks of a given type).

dataColumnArray= dbtable:prepareDataColumnArray()

taskArray= lm.tasks:prepareTaskArray(
 nTaskSubTypeCode=
lm.codes.TaskSubType.CFMiner)

lm.explore

DataTable

lm.prepro

Category

lm.tasks

TaskFT

FTWholeCedent
Setting

lm.tasks.settings

FTPartialCedent
Setting

FTLiteral
Setting

lm.tasks.results

FTQuantifier
Setting

HypothesisFT

FTPartialCedent

FTLiteral

Attribute

One Category

TaskGroup

Coefficient

Fig. 4 – 4ft-Miner Task classes in the lm.tasks sub-namespaces

Another prefix of find- is used to identify functions looking-up an object in an internal array by one of
its unique properties (usually by the ID or Name object properties). The identifier is passed as a
named parameter.

dataColumn= dataTable:findDataColumn(name= "District")

task= lm.tasks:findTask(nID= 7)

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 34

There is another special namespace dedicated to list code-tables and constants for identifying LISp-
Miner related types. It is automatically generated from the LISp-Miner Core source codes – Fig. 5 and
LMCL Reference Pages section below.

Fig. 5 – Example of generated codes for values of “TestingType”

4.2. Lua to LISp-Miner Binding
LISp-Miner objects are available within Lua scripts as instances of lua_userdata objects with meta-
tables attached to keep necessary information about each class properties and methods.

There is an abstract class CLuaBind on the top of the class hierarchy to implement basic Lua to LISp-
Miner binding functionality (see Fig. 6). A general class CLuaLMNamespace serves as an ancestor for
all the implemented namespaces. There are two general classes to wrap LISp-Miner Core classes and
to bind theirs properties and methods – CLuaLMWrap and CLuaLMWrapName. The distinction is in that
all the descendants from the CLuaLMWrapName class have Name and Note properties. All the objects
derived from the CLuaLMWrap class have the ID property for a unique identification (e.g. in the find-
functions).

LMLuaBind

LMLuaWrapName

LMLuaDatabase

LMLuaWrap

LMLuaNamespace

LMLuaLM

LMLuaMetabase

LMLuaExplore

LMLuaTaskSettings

LMLuaTaskResults

LMLuaPrepro

LMLuaTasks

� LMExec internals

� Lua script visible

DataTable

Hypothesis

DataColumn

Task

…

FTCedent

FTLiteral

…

Fig. 6 – Lua to LM Exec Binding classes hierarchy diagram

The other side of the binding (the above-mentioned LM Exec to LISp-Miner Core binding) was
implemented by the ordinary pointers to the LM Object Layer containing the real “production” LISp-

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 35

Miner classes. Thus, the CLuaBind objects are pure proxies to represent LISp-Miner objects in Lua
scripts and are lacking any functionality. Any request to access some object properties or functions
originated in the script is handled by a proxy object and propagated to its corresponding real LISp-
Miner Core object in the LM Object Layer, see also the LMCL conceptual schema in Fig. 1.

A special care has to be given to a proper memory management of both CLuaBind-derived proxy
objects and LM Object Layer objects. Lua implements a garbage collector to manage dynamic
memory allocations and de-allocations. LM Exec and LISp-Miner Core libraries are but implemented in
C++ and use the standard unmanaged way of allocating and releasing dynamic memory.

There were three situations identified, where problems could occur:
• multiple requests from the Lua code for the same LM Object Layer object should return the

same proxy object to allow for proper equality test results;
• a Lua reference has gone out scope, but the corresponding impostor object stays in memory

till the Lua garbage collector has time to release it;
• living proxy objects has to be notified when its corresponding real object is deleted internally in

the LM Object Layer.

The first situation has been solved by a reverse HashMap with pointers to real objects as keys and
pointers to proxy objects as values. So the same proxy object is returned if already exists, otherwise it
is created first and added into the HashMap for future look-up.

In respect to the second situation, no proxy objects are de-allocated and wait till they are released by
the Lua garbage collector. Moreover, an internal counter was implemented to remember number of
passed Lua script references. Proxy object becomes “dead” only after this counter returns back to
zero.

There was a call-back function implemented into LISp-Miner Core objects destructor in the LM Object
Layer (more precisely, to the destructor of the LMObject – the topmost class of hierarchy). After the
call-back registration from the LM Exec module is established, it allows for an arbitrary code to be
called during internal de-allocation of any LISp-Miner Core object. So a proxy object is notified that its
corresponding real object no longer exists and the link is destroyed. Nevertheless, the proxy object
has to stay alive to catch all possible calls from the still existing Lua script references. If such a call
occurs, a run-time error is reported and script execution is aborted.

An example of situation where this behavior takes effect is deleting of task settings represented by an
object of the Task class. Not only the reference to task settings itself is invalid from this point, so are
all the possible references to objects the task settings is composed from – partial cedents, literals,
quantifiers and so on (see Fig. 4 above). They all were deleted internally by the LM Object Layer
together with the given task settings. Therefore it is necessary to notify all theirs existing proxy objects
as described above.

5. LM Exec Module
The LM Exec module executes LMCL scripts. It is freely available also on the LISp-Miner download
page, but has to be downloaded separately (http://lispminer.vse.cz/files/exe/LM.Exec.zip) and
extracted into the LISp-Miner root directory. It has a simple interface (see Fig. 7) to open a script,
execute it and to see history of progress.

Scripts could be opened using the Open button and executed by pressing the Start button. If an error
occurs during execution, it is possible to switch to a text editor, change script at given position and
save changes. The updated version of script could be re-started without a need to open the script
again or even to restart the LM Exec module. Script execution could be cancelled or paused.

The center space of the LM Exec windows occupies a text log describing execution of the script. All
errors and warnings are logged and displayed during the script execution. So are main Lua-script
function calls and selected time-consuming LISp-Miner operations (depending on the log verbosity
level).

If an error is encountered, the script is aborted and a description of the error appears in the log
together with the line-number on which this error had occurred. User-defined debug-messages could
be logged also using the log function (or its variants) from the lm namespace.

The whole log could be copied into clipboard, but is also automatically saved into a file (with user-
predefined name).

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 36

Fig. 7 – LM Exec module dialog window

6. Programmers Reference
LMCL is meant to be used by researches to automate data mining process and by students in
advanced courses. There must be a proper documentation for the LM Control Language to be
understandable for both groups of users.

Fig. 8 – Example of Lua to LM function biding using C++ macros

The main reason for so much time was spent in looking-up a good solution for a proper Lua to LISp-
Miner binding was necessity of a complete reference manual to be generated automatically from
multiple source codes of the LISp-Miner Core and the LM Exec module especially. Thus, any change
to the implementation of Lua to LM Exec binding (e.g. a change to name or type of a function-
parameter to be called from LMCL scripts) does automatically update the corresponding description of
reference pages. Similarly, a list of LISp-Miner code-tables items included into scripts is updated after
a code-table is added or values are modified. Automatic updates are the only viable solution to avoid
future de-synchronization of the reference pages and the actual code implementation.

Although already available solutions were studied (namely the LuaDoc (LuaDoc)) and an inspiration
was taken from the JavaDoc (JavaDoc), they are not intended for documenting Lua embedding
application implementation. Decision finally taken was to implement an own implementation of
reference pages generation to tailor its needs to LMCL and to contain not only the Lua-script binding
related part, but also other descriptions taken directly from the LISp-Miner Core source codes (namely
the code-tables items). An example of the chosen solution is in Fig. 8.

There are prepared C++ macros for several types of function depending on their input and output
parameters structure. There is a function queryTaskGenerationStatusAll returning single long
integer value registered by the METHOD_REF_RETURN_LONG macro. Similarly, the
METHOD_REF_GETSET_STR macro is used to register setter and getter methods to manipulate with
string value of the Note property of any given object derived from the CLMLuaLMWrapName class.

The above presented examples demonstrate a single-place registration of a function both for the LM
Exec implementation of the Lua-script binding and for the reference pages generation. Therefore the

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 37

implementation of embedded function calls from the Lua-script exactly matches its description in the
reference pages. An example of automatically generated reference page descriptions is in Fig. 9.

Fig. 9 – Example of automatically generated description for class Task

An example of detailed descriptions for functions is in Fig. 10.

Fig. 10 – Example of automatically created detailed descriptions for functions

There are special-purpose comments directly in the source code for more complex functions with
several input obligatory and optional parameters (like is the runAllAndWaitForResults function in
Fig. 10). See the first line in Fig. 11 starting with @@ prefix. These hints are parsed directly from the
C++ source code during the generation of reference pages.

Fig. 11 – Example of in-code description of an input parameter

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 38

7. Results and Examples
The LISp-Miner Control Language was successfully implemented using Lua script interpreter library of
version 5.2. Any user-defined script could be now executed by the LM Exec module (interactively or as
a batch in background). The Lua interpreter used is really lightweight and proved to be fast, so far
tested with medium-sized scripts (up to thousands of code-lines). Script parsing and execution
overhead costs are insignificant compared to data mining task solution times or to data transfers from
database. Performance of LMCL scripts therefore depends solely on ability of the LISp-Miner system
modules to compute data mining tasks. It has been proved already (Rauch&Šimůnek, 2005) that the
algorithms and optimizations techniques implemented in the LISp-Miner system lead to solution times
linearly dependant on number of rows (objects) in analyzed data.

There are several examples included in the LM Exec installation package. They range from the
obligatory “Hello, world!” example to a more complex one called EverMinerSimple.

Data
Import

Input
Parameters
Domain

Knowledge

Data
(CSV)

Data in
Relational
Database

Data
Exploration

Prepro-
cessing

Metadata

Path to data

Attribute
Grouping Hints

Tasks

Parallel
Processing

Acceptable number
of patterns

Groups of
Analytical

Tasks

Found Patterns

Results
Summary

Analytical
Report

Groups of
Discretized
Attributes

Fig. 12 – EverMinerSimple algorithm overview

The EverMinerSimple demo is a really simplified version of the EverMiner concept, rather a prototype
of it. Its only purpose is to proof that the LM Control Language is really able to automate the data
mining process.

This prototype solution implements only one iteration of the main phases of data mining process with
no new domain knowledge inferred yet. But it already incorporates the inner cycle of fine-tuning tasks
parameters to obtain an acceptable number of patterns in results (this number is an input parameter –
see below). Only one type of pattern is used for now – 4ft-association rule.

There is a conceptual diagram of EverMinerSimple steps in Fig. 12.

Few user-defined parameters provide all the necessary input to the whole process. The first group of
parameters defines the text file with analyzed data to import, destinations to store the created
database with analyzed data and the database with meta-data. Finally, it defines the ODBC
DataSourceName to identify this data + meta-data pair within the operating system.

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 39

The second group of parameters provides a bit of domain knowledge – groups of attributes the
analyzed data columns should be grouped into. This information is important for analytical tasks
construction, where all the possible combinations of groups of attributes in antecedents and
succedents of patterns to be mined are created.

Fig. 13 – Example of an automatically created EverMinerSimple analytical report (shortened)

The most interesting input parameters are the minimal and maximal number of patterns to mine,
regardless of combination of groups this particular task is concerning. There are several ways how to
reduce (or enlarge) task search space to influence the number of found patterns, but they are out of
scope of this paper. Nevertheless, they are exploited in the Parallel processing phase to ensure the
number of found patterns is within given range. (A check for maximal number of iteration is
implemented to avoid a never-ending cycle.)

An important feature is that no task settings are changed after it was processed. Every time a change
is necessary to task settings, its exact clone is created first and the desired change is made to this
cloned task settings instead. Therefore, a complete history of task settings evolution, together with a
number and an exact form of found patterns is preserved in the meta-data database. It could be used
later for investigations of steps and decisions taken during automated data mining process – either for
debug purposes or to help with a proper interpretation of found patterns.

The last input parameter specifies the path and name of file for the analytical report to be written into.
In this example, a HTML report is prepared and opened in operating system default web browser. A
manually shortened version is in Fig. 13.

In this particular case, amount of found patterns for an analytical task Calendar, Guest, Visit implying
Weather type was not reduced to number requested by input parameters (even after reaching an
arbitrary limit of eight iterations of task settings changes). This failure is mentioned in the report and
only two of found patterns are shown. Please remember also, that EverMinerSimple example is just a
prototype with no ambition to provide real results yet.

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 40

8. Other Approaches
The most popular programming language for data mining is R with 52.5 % of respondents reporting its
usage for a data mining related task within past 12 months, according to 2012 poll results presented
on KDnuggets.com (KDnuggets Poll, 2012). It is followed by Python (36.1 %), a general scripting
language, and by SQL (32.1 %), a structured query language designed for relational database data
retrieval and manipulation. Java, a general programming language, closes the top-five list with 21.2 %.

R is a programming language and (environment) developed primary for statistical computing, see
http://www.r-project.org/. It is an implementation of S language (Becker&Chambers, 1984). R is a
GNU project and is supported by a large community, including the R Foundation. Its wide focus is both
its advantage and disadvantage. LISp-Miner and LMCL is not so capable and has not so many
different modules and add-ons but its more narrow focus and compactness makes research in the
area of data mining automation more feasible.

An interesting fact is a wide adoption of general programming languages for data mining analysis. We
suppose that these general languages are involved in data import and data preprocessing phases
where they general (or system oriented) abilities could be exploited. It is very laborious to implement
any specialized data mining technique (like clustering or decision trees) in those languages from
scratch.

It has much more sense for data mining automation to step above to a higher level of abstraction and
to use a data mining system and its features as building blocks (as LMCL allows).

Another commonly used method of describing steps of data mining and of data flowing from one step
to another is visualization of boxes and links among them, popularized first by the Clementine system
(later SPSS Modeller and now IBM SPSS Modeller, see http://www.spss.com/clementine). A large
number of data mining tools re-implemented this graphical approach, e.g. Ferda (Ralbovský, 2007),
including the RapidMiner (http://www.rapidminer.com) system.

There is a clear benefit of a graphical representation of any algorithm regardless of its nature – there
were already made several attempts to replace traditional programming based on writing source-texts
by a mouse-driven positioning of graphical boxes on desktop to visually describe underlying algorithm,
usually called “visual programming languages” (no connection to Microsoft’s Visual XX family of
programming language products). An example of visual programming language is Simulink
(http://www.mathworks.com/products/simulink). The most important advantage is understandability
and clarity of graphs with not too many nodes and links among them. Anyone could see then at glance
the whole algorithm and could visually trace its execution. This could be suitable for beginners
because software learning curve is steep and for relatively small problems.

Unfortunately, this approach is not scalable. If number of nodes exceeds relatively low threshold of 10
nodes (or there is too many links among nodes) human ability to mentally absorb information included
in the graph rapidly decreases, (Miller, 1956). There are practical problems also with choosing a
suitable position for each of boxes (mainly to minimize links overlapping). Finally, graphs could grow
very large and problems emerge with parts of graph being outside the working space on screen or
boxes on printed graph being too small when scaled to fit to size of paper.

Despite of a higher effort and a longer time that must be spent initially to become familiar with syntax
of chosen scripting language, the traditional approach of written source-texts makes possible to
implement an algorithm regardless of its complexity and number of steps it includes.

9. Summary
The LISp-Miner Control Language is a necessary prerequisite for data mining automation in the
EverMiner concept. But it could serve for other purposes as well. Firstly, it will be used to prepare pre-
release testing scripts of a new version of the LISp-Miner system to prove that no bugs were
unintentionally introduced by adding a new functionality. Secondly, the scripting language will become
a part of advanced teaching courses to allow students to better understanding of implementation
details of data mining algorithms. They could possibly implement some add-ons or new features to
existing LISp-Miner functionality.

10. References
AGRAWAL, R.; IMIELINSKI, T.; SWAMI, A. 1993. Mining associations between sets of items in

massive databases. In Proc. of the ACM-SGMOD 1993 Int Conference on Management
of Data, Washington D.C., 1993, s 207-216.

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 41

Becker, R. A.; Chambers, J. M. 1984. S: An Interactive Environment for Data Analysis and Graphics.
Pacific Grove, CA, USA: Wadsworth & Brooks/Cole. 1984. ISBN 0-534-03313-X.

BERKA, Petr. 2011. ETree Miner: a new GUHA procedure for building exploration trees. In: Foundations
of Intelligent Systems. New York: Springer, 2011, s. 96-101. ISBN 978-3-642-21915-3.
ISSN 0302-9743.

ECMA-262 Stadandard. ECMAScript. description available at http://www.ecma-
international.org/publications/standards/Ecma-262.htm (cit. 2014-01-08).

HÁJEK, P. 1974. Automatic listing of important observational statements I-III. Kybernetika 9. 1973, s.
187-205, s. 251-271 a Kybernetika, 10, 1974, s. 95-124.

HÁJEK, Petr; HAVRÁNEK, Tomáš. 1982. GUHA 80: An Application of Artificial Intelligence to Data
Analysis. Computers and Artificial Intelligence, Vol. 1. 1982. pp. 107–134

HÁJEK, Petr; IVÁNEK, Jiří. 1982. Artificial Intelligence and Data Analysis. In: Caussinus H., Ettinger
P., Tomassone R. (eds.) Proceedings COMPSTAT '82. Wien. Physica Verlag. 1982. pp.
54–60

HÁJEK, P.; HAVEL, I.; CHYTIL, M. 1966. GUHA – method of a systematic search for hypotheses.
Kybernetika, Vol. 2, 1966, pp. 31-47.

HÁJEK, P.; HOLEŇA, M.; RAUCH, J. 2010. The GUHA method and its meaning for data mining.
Journal of Computer and System Sciences, 76, 2010, pp. 34-48.

HOLEŇA, Martin 1996. Exploratory data processing using a fuzzy generalization of the Guha
approach. In J.F. Baldwin (Ed.), Fuzzy Logic, John Wiley and Sons, New York, 1996.
pages 213-229.

IERUSALIMSCHY, Roberto. 2013. Programming in Lua – Third edition. Lua.org. January 2013. ISBN
859037985X

IERUSALIMSCHY, R.; Figueiredo, L. H. de; Celes, W. 1996. Lua – an extensible extension language.
Software: Practice & Experience 26 #6 (1996) 635–652. (doi)

IERUSALIMSCHY, R.; Figueiredo, L. H. de; Celes, W. 2006. Lua 5.1 Reference Manual. Lua.org.
August 2006. ISBN 8590379833

JavaDoc project home page. (cit. 2014-01-08) Available at:
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

KDNuggets Poll results. 2012. Top languages for analytics/data mining programming.
KDNuggets.com. (cit. 2014-01-08) http://www.kdnuggets.com/2012/08/poll-analytics-
data-mining-programming-languages.html

KLIEGR, Tomáš, SVÁTEK, Vojtěch, RALBOVSKÝ, Martin, ŠIMŮNEK, Milan. 2010. SEWEBAR-CMS:
semantic analytical report authoring for data mining results. Intelligent Information
Systems (online), 2010, pp. 1-25. ISSN 0925-9902. URL:
http://dx.doi.org/10.1007/s10844-010-0137-0.

LÍN, Václav, DOLEJŠÍ, Petr, RAUCH, Jan, ŠIMŮNEK, Milan. 2004. The KL-Miner Procedure for
Datamining. Neural Network World, 2004, Vol. 5, pp. 411–420. ISSN 1210-0552.

LISp-Miner system home page. (cit. 2014-01-08) Available at: http://lispminer.vse.cz

Lua scripting language home page. (cit. 2014-01-08) Available at: http://www.lua.org

LuaDoc project home page. (cit. 2014-01-08) Available at: http://keplerproject.github.io/luadoc

MILLER, G. A. 1956. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological Review 63 (2): 81–97. 1956.
doi:10.1037/h0043158.

PICHÉ, R., TURUNEN, E. 2010. Bayesian Essaying of GUHA nuggets. In Hüllermeier, E. et al. (eds.)
Information Processing and Management of Uncertainty in Knowledge-Based Systems.
Theory and Methods, 13th International Conference, IPMU 2010, Dortmund, Germany,
June 28 - July 2, 2010. Communications in Computer and Information Science 80 Part 2
(2010). pp. 348-355.

RALBOVSKÝ, Martin. 2007. History and Future Development of the Ferda System. Mundus
Symbolicus, 2007, 15, Vol. 15, p. 143–147. ISSN 1210-809X.

RAUCH, Jan. 2005. Logic of Association Rules. Applied Intelligence, 2005, č. 22, s. 9–28. ISSN 0924-
669X.

MILAN ŠIMŮNEK

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 42

RAUCH, Jan. 2009. Considerations on Logical Calculi for Dealing with Knowledge in Data Mining
online. In: RAS, Zbigniew W., DARDZINSKA, Agnieszka. Advances in Data
Management. Berlin : Springer-Verlag, 2009, s. 177–201. Studies in Computational
Intelligence 223/2009. ISBN 978-3-642-02189-3. ISSN 1860-949X.

RAUCH, Jan. 2010. Logical Aspects of the Measures of Interestingness of Association Rules. In:
KORONACKI, Jacek, RAS, Zbigniew W., WIERZCHON, Slawomir T., KACPRZYK,
Janusz. Advances in Machine Learning II. Berlin : Springer Verlag, 2010, s. 175–203.
532 s. ISBN 978-3-642-05178-4.

RAUCH, Jan. 2011. Consideration on a Formal Frame for Data Mining. In: IEEE 2011. Kaohsiung,
08.11.2011 – 10.11.2011. Piscataway : IEEE Computer Society, 2011, s. 562–569.
ISBN 978-1-4577-0370-6.

RAUCH, Jan. 2012a. EverMiner: consideration on knowledge driven permanent data mining process.
International Journal of Data Mining, Modelling and Management (online), 2012, 4, Vol.
3, p. 224–243. ISSN 1759-1163. URL:
http://www.inderscience.com/info/inarticle.php?artid=48105. eISSN 1759-1171.

RAUCH, Jan. 2012b. Formalizing Data Mining with Association Rules. In: Proceedings of 2012 IEEE
International Conference on Granular Computing (GRC 2012). Los Alamitos : IEEE
Computer Society, 2012, pp. 406–411.

RAUCH, Jan. 2013. Observational Calculi and Association Rules. Berlin : Springer-Verlag, 2013. 296
pp. ISBN 978-3-642-11736-7. ISSN 1860-949X.

RAUCH, Jan, ŠIMŮNEK, Milan. 2005. An Alternative Approach to Mining Association Rules. In: LIN,
Tsau Young et.al.(eds.). Foundations of Data Mining and Knowledge Discovery. Berlin :
Springer, 2005, s. 211–231. ISBN 3-540-26257-1. ISSN 1860-949X (Print) 1860-9503
(Online). URL: http://www.springer.com/engineering/book/978-3-540-26257-2

RAUCH, Jan, ŠIMŮNEK, Milan. 2008. LAREDAM – Considerations on System of Local Analytical
Reports from Data Mining. In: Foundations of Intelligent Systems. Berlin : Springer-
Verlag, 2008, s. 143–149. ISBN 978-3-540-68122-9. ISSN 0302-9743.

RAUCH, Jan, ŠIMŮNEK, Milan. 2009. Action Rules and the GUHA Method: Preliminary
Considerations and Results. Praha 14.09.2009 – 17.09.2009. In: Foundations of
Intelligent Systems. Berlin : Springer Verlag, 2009, pp. 76–87. ISBN 978-3-642-04124-
2. ISSN 1867-8211.

RAUCH, J., ŠIMŮNEK, M. 2011. Applying Domain Knowledge in Association Rules Mining Process - First
Experience. In: Marzena Kryszkiewicz, Henryk Rybinski, Andrzej Skowron, Zbigniew W.
Ras (Eds.): Foundations of Intelligent Systems. Lecture Notes in Computer Science 6804
Springer, 2011, s. 113-122, ISBN 978-3-642-21915-3. ISSN 0302-9743. URL:
http://www.springer.com/computer/ai/book/978-3-642-21915-3.

RAUCH, Jan, ŠIMŮNEK, Milan. 2012. Formal Frame for Data Mining with Association Rules – a Tool for
Workflow Planning. In: ECAI 2012. (online) Montpellier, 21.08.2012 – 27.08.2012. Leiden :
Universita, 2012, s. 1–2. URL:
http://datamining.liacs.nl/planlearnpapers/planlearn2012_submission_2.pdf.

ŠIMŮNEK, Milan. 2003. Academic KDD Project LISp-Miner. In: ABRAHAM, A., FRANKE, K., KOPPEN,
K. (ed.). Advances in Soft Computing – Intelligent Systems Desing and Applications.
Heidelberg : Springer-Verlag, 2003, s. 263–272. ISSN 1434-922. ISBN 3-540-40426-0.

ŠIMŮNEK, Milan, RAUCH, Jan. 2011. EverMiner – Towards Fully Automated KDD Process. In:
FUNATSU, K., HASEGAWA, K. New Fundamental Technologies in Data Mining. Rijeka :
InTech, 2011, s. 221–240. 584 s. ISBN 978-953-307-547-1. (autorský podíl: 50 %)

ŠIMŮNEK, Milan, TAMMISTO, Teppo. 2010. Distributed Data-Mining in the LISp-Miner System Using
Techila Grid. In: ZAVORAL, Filip, YAGHOB, Jakub, PICHAPPAN, Pit, El-QAWASMEH,
Eyas (Eds.). Networked Digital Technologies. Berlin : Springer-Verlag, 2010, s. 15–21.
ISSN 1865-0929. ISBN 978-3-642-14291-8

V8 Google JavaScript Engine project home page. (cit. 2014-01-08) Available at:
http://code.google.com/p/v8/

YANG, Qiang; WU, Xindong. 2006. 10 CHALLENGING PROBLEMS IN DATA MINING RESEARCH.
International Journal of Information Technology & Decision Making. Vol. 5, No. 4 (2006)
597–604

JEL Classification: C60, D83

