
JOURNAL OF SYSTEMS INTEGRATION 2014/2 28 

LISp-Miner Control Language  
Description of scripting language implementation 

 
Milan Šimůnek 

University of Economics Prague, Faculty of Informatics and Statistics, Czech Republic 

simunek@vse.cz 
 

Abstract: This paper introduces the LISp-Miner Control Language – a scripting language for the LISp-
Miner system, an academic system for knowledge discovery in databases. The main purpose of this 
language is to provide programmable means to all the features of the LISp-Miner system and mainly 
to automate the main phases of data mining – from data introduction and preprocessing, formulation 
of analytical tasks, to discovery of the most interesting patterns. In this sense, the language is a 
necessary prerequisite for the EverMiner project of data mining automation. Language will serve other 
purposes too – for an automated verification of the LISp-Miner system functionality before a new 
version is released and as an educational tool in advanced data mining courses. 
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1. Introduction 
The goal of this paper is to introduce the LISp-Miner Control Language (LMCL) and describe its 
implementation. LMCL opens an access to LISp-Miner system core objects and functionality to be 
used on a higher level of abstraction in user-created scripts written in an understandable programming 
language. Its syntax allows for all the common programming concepts (as variables, expressions 
evaluation) and execution control constructs (if-then, loops or functions calls). Scripts are executed 
automatically and could perform sequences of operations much faster than if initiated manually 
through user interface. Thus, an algorithm could be implemented in LMCL syntax to automate some 
data mining process phases (and possible all of them). 

There are several unique features implemented in the LISp-Miner system, as mentioned later in this 
paper and in more details in cited references. The most important of them is a rich syntax of several 
types of mined patterns and theoretically well-founded inclusion of domain knowledge across the 
whole data mining process. Those features are becoming available through LMCL implementation and 
together they provide a necessary prerequisite for achieving the goal of data mining automation.  

Data mining process automation was included in the well known paper “10 Challenging Problems in 
Data Mining Research” (Yang&Wu, 2006) back in the 2006. There are mentioned challenges 
regarding automation of data mining operations, under the problem number 8, together with a need for 
special care that should be given to the pre-processing phase and data cleaning namely. Paper 
concluded that significant costs saving could be implied from successful mastering of automation. 

On the other hand, we are well aware that the whole problem is much wider than just crawling through 
data. There are other business-oriented steps that pre-cede or follow-up the actual data mining 
analysis. These are hardly to automate and possibly not suitable for automation at all (e.g. a problem 
identification and definition from managerial point of view, trust establishment between data owner and 
data analyzer or practical deployment of knowledge obtained through data mining analysis). 
Nevertheless, there are clear benefits from automation of computer-aided phases of data mining – be 
it speed-up in time of analysis, an automatic deployment of know-how and best-practices or a new 
value added through permanent update of known patterns.  

Data mining automation is a long term research goal of the EverMiner project (Šimůnek&Rauch, 2011), 
(Rauch, 2012a). It is built upon the LISp-Miner system platform (see the next section) and on theoretical 
results in areas of formalization of domain knowledge, formulation of analytical questions, observational 
calculi and synthesis of new knowledge from found patterns (Rauch, 2011), (Rauch, 2012b), 
(Rauch&Šimůnek, 2012). The idea of the EverMiner is inspired by the project GUHA80 
(Hájek&Havránek, 1982, Hájek&Ivánek, 1982) that has been but never realized. The architecture, 
particular software, theoretical components and the principles of the mining process management 
used in EverMiner differ from that used in GUHA80. However both projects are based on the 
application of GUHA data mining procedures (see later).  



MILAN ŠIMŮNEK 

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 29 

This paper is organized as follows. Two basic stones the LMCL was built upon – LISp-Miner system 
and Lua scripting language – are shortly described in the next section and section 3 respectively. A 
general concept of implemented solution, detailed description of LMCL language syntax and of the 
way it connects scripts to LISp-Miner Core is presented in section 4. The LM Exec module to interpret 
scripts is described in section 5. A special section 6 was dedicated to an automatically generated 
programmer’s documentation to LMCL. Achieved results and a proof of the concept in terms of the 
EverMinerSimple demo example is in section 7. They are other existing languages used for data 
mining and for algorithms description mentioned in section 8. Finally, a summary ends this paper. 

2. LISp-Miner System 
The LISp-Miner system is an academic system used mainly for data mining research and teaching. 
The system is developed at University of Economics, Prague since 1996. It is freely available at 
http://lispminer.vse.cz and is used at several universities in Czech Republic, Finland, France and USA 
and for real data analyses. For more details see (Šimůnek, 2003). LISp-Miner consists now of ten data 
mining analytical procedures plus thirteen other modules supporting e.g. the Business understanding 
and Data preprocessing phases of the data mining process, parallel processing or communication with 
other systems.  

The system is based on many decades of related research of the GUHA method, an original Czech 
method of exploration analysis. Theoretical foundations were published in books and papers since 
1960’s – see e.g. (Hájek et al., 1966), (Hájek, 1974), (Hájek&Havránek, 1978), (Holeňa, 1996), 
(Rauch, 2005), (Rauch, 2009), (Piche&Turunen, 2010), (Rauch&Šimůnek, 2008). A complex overview 
could be found in (Rauch, 2013) and a summary of the GUHA method in (Hájek et al., 2010).  
There are several types of patterns the LISp-Miner could mine for: 4ft-association rules – we would 
like to stress that we do not mine for simple association rules derived from shopping baskets in the 
sense of (Agrawal et al., 1993), but for more complex types of patterns (Rauch&Šimůnek, 2005) – 
action rules (Rauch&Šimůnek, 2009), conditional histograms of single attribute (Hájek et al., 2010), 
conditional frequencies of two multi-categorical attributes (Lín et al., 2005), decision- and exploration-
trees (Berka, 2011), clusters or even for pairs of patterns trying to compare two subsets of original 
data (so called set-difference rules). All types of patterns use a rich syntax of so called Derived 
Boolean Attributes – automatically generated conjunctions and disjunctions of Basic Boolean 
Attributes. Basic Boolean Attribute is an expression A(α) where A is an attribute and α is a subset of 
its possible values, again automatically generated. An Basic Boolean attribute A(α) is true in a row of 
analyzed data matrix if the value of A in this row belongs to α  – for details see (Rauch&Šimůnek, 
2005). This is an important feature which distinguish the LISp-Miner from most of other systems where 
only expressions of A(a) are allowed, where a is one of possible values of A.  

Highly optimized algorithms allow for mining of these automatically constructed complex patterns in a 
reasonable time. Parallel processing of tasks is available through distributed grid or cloud 
(Šimůnek&Tammisto, 2010). Achieved theoretical results based on observational calculi and logic of 
association rules namely, for details see (Rauch, 2010), were subsequently implemented and used to 
filter-out already known facts from the found patterns (Rauch&Šimůnek, 2011). 

Syntactical richness, together with LISp-Miner data preprocessing features allow for wide range of 
interesting patterns to be automatically found in analyzed data. We would like to mention, that LISp-
Miner is a closed system from point of view of implemented objects, analytical procedures or 
operators. This approach makes “tight” code and thorough optimizations within the whole system 
possible. The LMCL proposed here opens these features to everybody to build something upon them 
on a higher level of abstraction. 

3. Lua Scripting Language 
First of all, an option to develop an own scripting language was considered. It has become clear that 
this is a no-way solution due to time and effort it would have been necessary to spend on such an 
adventure. Moreover, the final result would not be on par with already existing languages and valuable 
developers capacity would have been blocked in maintenance of just another weird syntax language.  

Therefore existing scripting languages with a possibility to be embedded by a C++ application (such 
as LISp-Miner) were considered to base the LM Control Language syntax on them. Two have 
emerged as run-off competitors – Lua (Ierusalimschy et al., 1996) and JavaScript (based on the 
ECMA-262 standard, see (Ecma), respectively its Google Chrome V8 Engine implementation (V8).  

Finally, the Lua was chosen based on history of its development, more traditional syntax (with 
probably steeper learning curve and understandability of code), easy installation of development 
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platform, more straightforward embedding of LISp-Miner functionality into script syntax and last but not 
least on learning materials provided by the Lua community.  

Lua (according to its official pages) is a powerful, fast, lightweight, embeddable scripting language. 
Lua combines simple procedural syntax with powerful data description constructs based on 
associative arrays and extensible semantics. Lua is dynamically typed, runs by interpreting bytecode 
for a register-based virtual machine, and has automatic memory management with incremental 
garbage collection. For more detail see http://www.lua.org. 

Moreover, Lua is free and compact. Its language is widely used, was primary developed for 
embedding in different types of applications and it is supported by a large community of developers. 
Its syntax is relatively simple (Ierusalimschy et al., 2006), so script-authors could concentrate on theirs 
algorithms implementation instead. 

Lua has been chosen even despite of unavailability of objects in it (it is based on the pure C not C++), 
compared to JavaScript natural integration of objects and classes. This drawback was overcome with 
concept of tables and meta-tables in Lua (Ierusalimschy, 2013). Tables and meta-tables are a neatly 
way of integration of objects and classes into scripts without any complications to its syntax. This is 
also demonstrated in examples and in recommendations found on Lua community pages. 

4. LISp-Miner Control Language 
The purpose of the LISp-Miner Control Language (LMCL) is to allow for calling of LISp-Miner internal 
functions and accessing user’s meta-data in an automated manner. The main goal is to provide a 
script-like mean to import data, to preprocess them, to formulate reasonable analytical tasks, to 
process those tasks and finally to digest results (found patterns) and to report only the interesting ones 
to the user. In this sense, it is a necessary prerequisite for the automation of data mining process in 
realm of the EverMiner. 

The basic concept of the LM Control Language integration into the LISp-Miner system is in Fig. 1. 
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Fig. 1 – LISp-Miner Control Language conceptual schema 

There is a LM Control Language script (which could further include several other scripts and libraries) 
on the input. This script is executed by the LM Exec module (see later) using the Lua language 
interpreter (Ierusalimschy et al., 1996), of the 5.2 version currently.  

The main LISp-Miner Core object classes and high-level functions were embedded into the Lua 
interpreter, so were calls to the main task processing modules LM ProcPooler and LM GridPooler. 
Therefore the LMCL scripts have access to the LISp-Miner internal object model to manipulate with 
meta-data structures (like discretized attributes, analytical tasks settings or found patterns) and to call 
functions (like to automatically create equi-frequent discretize bins for values in a given database 
column). Specialized modules for processing analytical tasks could be called from within scripts with 
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option to choose between the parallel processing on multiple cores of the local computer (LM 
ProcPooler) or distributed parallel processing on computer grid or cloud (LM GridPooler). 

The script execution is logged, so the whole history of execution is available. The log is simultaneously 
displayed in the LM Exec window to interactively inform users about the progress of the execution 
(including possible warnings or errors). He or she could pause or stop the execution as necessary. 

There were two main problems identified design phase – how to allow the Lua script syntax to use the 
LISp-Miner objects and functions (Lua to LM Exec binding) and how to expose the LISp-Miner to the 
LM Exec module (LM Exec to LISp-Miner Core binding). 

Though both the problems are interconnected, they were solved separately due to their nature and 
different levels of familiarity and therefore self-confidence to find out a solution on the LISp-Miner part 
(seventeen years of in-house development) and on the part of Lua (initially, with only limited 
knowledge and practically no experience with it) – see subsection 4.2. 

4.1. Language Syntax 
LMCL follows Lua naming conventions as far as they were identified in Lua examples. Names of 
variables, namespaces, functions, methods and named-function-parameters start with lower letters. 
Only the names of classes, theirs properties and predefined global constants start with capital letters. 
Names compounded from two or more words follow the “camel” convention of starting capital letters 
for the second and every other word.  

There is an example of LMCL script syntax in Fig. 2. An array of all database tables in analyzed data 
database is retrieved (line 28) and individual tables are iterated using a for-loop (line 31). Each table is 
initialized (line 36) and presence of primary-key is checked and updated if necessary (lines 38 to 47). 
Data caching is enabled also to speed-up future analytical task processing (line 54). There are also 
examples of user-defined messages to be included in the execution log (lines 24, 33 and 50–51). 

 
Fig. 2 – LMCL script syntax example 
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LMCL implementation follows Lua convention of namespaces. All the LISp-Miner related functions and 
classes are placed in the lm namespace. It is moreover subdivided into additional namespaces as is 
shown in Fig. 3. 

There is lm.database namespace containing the analyzed data related functions, namely the 
importTXT function to import text/CSV files. There is the lm.metabase namespace for functions to 
create and associate of a meta-data database (storing data preprocessing parameters, analytical 
tasks settings and found patterns). Classes and functions for data exploration (e.g. to collect 
information about database tables and columns of analyzed data) are in the lm.explore 
namespace. Preprocessing and data transformations related classes and functions are in the 
lm.prepro namespace. The most important classes are categorized Attributes and its 
Categories. Finally, there is lm.tasks namespace for classes and function for analytical tasks 
settings and browsing results (found patterns). This namespace is divided into two sub-namespaces 
for more clarity – lm.tasks.settings and lm.tasks.results. Respective classes for these two 
sub-namespaces (for the 4ft-Miner procedure) are shown in Fig. 4. 

There are unified name prefixes of set- and get- for functions reading and setting properties of 
objects. The setter function has a single unnamed parameter of the same type as the property it is 
modifying. Of the same type is the return of a corresponding getter function. 

dataColumn.getName()    -- returns column name as string 
attribute.setName( "age")  -- changes name of the attribute 

Unnamed parameters for function calls are used only for setter functions and for few other simple 
functions (mainly the logging functions from the lm namespace). In all other cases the named 
parameters are used for enhancing readability and clarity of the script codes.  
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Fig. 3 – Namespaces and basic classes 
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A simplified Hungarian notation is used to identify four basic types of named parameters. 

nTaskSubTypeCode   -- an integer number expected 
dParamP  -- a floating-point number (double  

precision) is expected 
bForceRunFinished   -- a Boolean value is expected 
pParentGroup   -- a reference to an LMObject is 

expected 

A special function name prefix prepare- is used to identify functions or methods returning an array of 
objects as a table data-type. Some prepare- functions allow passing an optional parameter to filter 
only some objects from the internal array (e.g. only tasks of a given type). 

dataColumnArray= dbtable:prepareDataColumnArray() 

taskArray= lm.tasks:prepareTaskArray(  
                     nTaskSubTypeCode= 
lm.codes.TaskSubType.CFMiner) 
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Fig. 4 – 4ft-Miner Task classes in the lm.tasks sub-namespaces 

Another prefix of find- is used to identify functions looking-up an object in an internal array by one of 
its unique properties (usually by the ID or Name object properties). The identifier is passed as a 
named parameter. 

dataColumn= dataTable:findDataColumn( name= "District") 

task= lm.tasks:findTask( nID= 7) 
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There is another special namespace dedicated to list code-tables and constants for identifying LISp-
Miner related types. It is automatically generated from the LISp-Miner Core source codes – Fig. 5 and 
LMCL Reference Pages section below. 

 
Fig. 5 – Example of generated codes for values of “TestingType” 

4.2. Lua to LISp-Miner Binding 
LISp-Miner objects are available within Lua scripts as instances of lua_userdata objects with meta-
tables attached to keep necessary information about each class properties and methods.  

There is an abstract class CLuaBind on the top of the class hierarchy to implement basic Lua to LISp-
Miner binding functionality (see Fig. 6). A general class CLuaLMNamespace serves as an ancestor for 
all the implemented namespaces. There are two general classes to wrap LISp-Miner Core classes and 
to bind theirs properties and methods – CLuaLMWrap and CLuaLMWrapName. The distinction is in that 
all the descendants from the CLuaLMWrapName class have Name and Note properties. All the objects 
derived from the CLuaLMWrap class have the ID property for a unique identification (e.g. in the find- 
functions). 
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Fig. 6 – Lua to LM Exec Binding classes hierarchy diagram 

The other side of the binding (the above-mentioned LM Exec to LISp-Miner Core binding) was 
implemented by the ordinary pointers to the LM Object Layer containing the real “production” LISp-



MILAN ŠIMŮNEK 

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 35 

Miner classes. Thus, the CLuaBind objects are pure proxies to represent LISp-Miner objects in Lua 
scripts and are lacking any functionality. Any request to access some object properties or functions 
originated in the script is handled by a proxy object and propagated to its corresponding real LISp-
Miner Core object in the LM Object Layer, see also the LMCL conceptual schema in Fig. 1. 

A special care has to be given to a proper memory management of both CLuaBind-derived proxy 
objects and LM Object Layer objects. Lua implements a garbage collector to manage dynamic 
memory allocations and de-allocations. LM Exec and LISp-Miner Core libraries are but implemented in 
C++ and use the standard unmanaged way of allocating and releasing dynamic memory. 

There were three situations identified, where problems could occur: 
• multiple requests from the Lua code for the same LM Object Layer object should return the 

same proxy object to allow for proper equality test results; 
• a Lua reference has gone out scope, but the corresponding impostor object stays in memory 

till the Lua garbage collector has time to release it; 
• living proxy objects has to be notified when its corresponding real object is deleted internally in 

the LM Object Layer. 

The first situation has been solved by a reverse HashMap with pointers to real objects as keys and 
pointers to proxy objects as values. So the same proxy object is returned if already exists, otherwise it 
is created first and added into the HashMap for future look-up.  

In respect to the second situation, no proxy objects are de-allocated and wait till they are released by 
the Lua garbage collector. Moreover, an internal counter was implemented to remember number of 
passed Lua script references. Proxy object becomes “dead” only after this counter returns back to 
zero. 

There was a call-back function implemented into LISp-Miner Core objects destructor in the LM Object 
Layer (more precisely, to the destructor of the LMObject – the topmost class of hierarchy). After the 
call-back registration from the LM Exec module is established, it allows for an arbitrary code to be 
called during internal de-allocation of any LISp-Miner Core object. So a proxy object is notified that its 
corresponding real object no longer exists and the link is destroyed. Nevertheless, the proxy object 
has to stay alive to catch all possible calls from the still existing Lua script references. If such a call 
occurs, a run-time error is reported and script execution is aborted. 

An example of situation where this behavior takes effect is deleting of task settings represented by an 
object of the Task class. Not only the reference to task settings itself is invalid from this point, so are 
all the possible references to objects the task settings is composed from – partial cedents, literals, 
quantifiers and so on (see Fig. 4 above). They all were deleted internally by the LM Object Layer 
together with the given task settings. Therefore it is necessary to notify all theirs existing proxy objects 
as described above. 

5. LM Exec Module 
The LM Exec module executes LMCL scripts. It is freely available also on the LISp-Miner download 
page, but has to be downloaded separately (http://lispminer.vse.cz/files/exe/LM.Exec.zip) and 
extracted into the LISp-Miner root directory. It has a simple interface (see Fig. 7) to open a script, 
execute it and to see history of progress. 

Scripts could be opened using the Open button and executed by pressing the Start button. If an error 
occurs during execution, it is possible to switch to a text editor, change script at given position and 
save changes. The updated version of script could be re-started without a need to open the script 
again or even to restart the LM Exec module. Script execution could be cancelled or paused.  

The center space of the LM Exec windows occupies a text log describing execution of the script. All 
errors and warnings are logged and displayed during the script execution. So are main Lua-script 
function calls and selected time-consuming LISp-Miner operations (depending on the log verbosity 
level).  

If an error is encountered, the script is aborted and a description of the error appears in the log 
together with the line-number on which this error had occurred. User-defined debug-messages could 
be logged also using the log function (or its variants) from the lm namespace.  

The whole log could be copied into clipboard, but is also automatically saved into a file (with user-
predefined name). 
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Fig. 7 – LM Exec module dialog window 

6. Programmers Reference 
LMCL is meant to be used by researches to automate data mining process and by students in 
advanced courses. There must be a proper documentation for the LM Control Language to be 
understandable for both groups of users. 

 
Fig. 8 – Example of Lua to LM function biding using C++ macros 

The main reason for so much time was spent in looking-up a good solution for a proper Lua to LISp-
Miner binding was necessity of a complete reference manual to be generated automatically from 
multiple source codes of the LISp-Miner Core and the LM Exec module especially. Thus, any change 
to the implementation of Lua to LM Exec binding (e.g. a change to name or type of a function-
parameter to be called from LMCL scripts) does automatically update the corresponding description of 
reference pages. Similarly, a list of LISp-Miner code-tables items included into scripts is updated after 
a code-table is added or values are modified. Automatic updates are the only viable solution to avoid 
future de-synchronization of the reference pages and the actual code implementation. 

Although already available solutions were studied (namely the LuaDoc (LuaDoc)) and an inspiration 
was taken from the JavaDoc (JavaDoc), they are not intended for documenting Lua embedding 
application implementation. Decision finally taken was to implement an own implementation of 
reference pages generation to tailor its needs to LMCL and to contain not only the Lua-script binding 
related part, but also other descriptions taken directly from the LISp-Miner Core source codes (namely 
the code-tables items). An example of the chosen solution is in Fig. 8. 

There are prepared C++ macros for several types of function depending on their input and output 
parameters structure. There is a function queryTaskGenerationStatusAll returning single long 
integer value registered by the METHOD_REF_RETURN_LONG macro. Similarly, the 
METHOD_REF_GETSET_STR macro is used to register setter and getter methods to manipulate with 
string value of the Note property of any given object derived from the CLMLuaLMWrapName class. 

The above presented examples demonstrate a single-place registration of a function both for the LM 
Exec implementation of the Lua-script binding and for the reference pages generation. Therefore the 
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implementation of embedded function calls from the Lua-script exactly matches its description in the 
reference pages. An example of automatically generated reference page descriptions is in Fig. 9. 

 
Fig. 9 – Example of automatically generated description for class Task 

An example of detailed descriptions for functions is in Fig. 10. 

 
Fig. 10 – Example of automatically created detailed descriptions for functions 

There are special-purpose comments directly in the source code for more complex functions with 
several input obligatory and optional parameters (like is the runAllAndWaitForResults function in 
Fig. 10). See the first line in Fig. 11 starting with @@ prefix. These hints are parsed directly from the 
C++ source code during the generation of reference pages. 

 
Fig. 11 – Example of in-code description of an input parameter 
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7. Results and Examples 
The LISp-Miner Control Language was successfully implemented using Lua script interpreter library of 
version 5.2. Any user-defined script could be now executed by the LM Exec module (interactively or as 
a batch in background). The Lua interpreter used is really lightweight and proved to be fast, so far 
tested with medium-sized scripts (up to thousands of code-lines). Script parsing and execution 
overhead costs are insignificant compared to data mining task solution times or to data transfers from 
database. Performance of LMCL scripts therefore depends solely on ability of the LISp-Miner system 
modules to compute data mining tasks. It has been proved already (Rauch&Šimůnek, 2005) that the 
algorithms and optimizations techniques implemented in the LISp-Miner system lead to solution times 
linearly dependant on number of rows (objects) in analyzed data. 

There are several examples included in the LM Exec installation package. They range from the 
obligatory “Hello, world!” example to a more complex one called EverMinerSimple. 
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Fig. 12 – EverMinerSimple algorithm overview 

The EverMinerSimple demo is a really simplified version of the EverMiner concept, rather a prototype 
of it. Its only purpose is to proof that the LM Control Language is really able to automate the data 
mining process.  

This prototype solution implements only one iteration of the main phases of data mining process with 
no new domain knowledge inferred yet. But it already incorporates the inner cycle of fine-tuning tasks 
parameters to obtain an acceptable number of patterns in results (this number is an input parameter – 
see below). Only one type of pattern is used for now – 4ft-association rule. 

There is a conceptual diagram of EverMinerSimple steps in Fig. 12. 

Few user-defined parameters provide all the necessary input to the whole process. The first group of 
parameters defines the text file with analyzed data to import, destinations to store the created 
database with analyzed data and the database with meta-data. Finally, it defines the ODBC 
DataSourceName to identify this data + meta-data pair within the operating system.  
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The second group of parameters provides a bit of domain knowledge – groups of attributes the 
analyzed data columns should be grouped into. This information is important for analytical tasks 
construction, where all the possible combinations of groups of attributes in antecedents and 
succedents of patterns to be mined are created.  

 
Fig. 13 – Example of an automatically created EverMinerSimple analytical report (shortened) 

The most interesting input parameters are the minimal and maximal number of patterns to mine, 
regardless of combination of groups this particular task is concerning. There are several ways how to 
reduce (or enlarge) task search space to influence the number of found patterns, but they are out of 
scope of this paper. Nevertheless, they are exploited in the Parallel processing phase to ensure the 
number of found patterns is within given range. (A check for maximal number of iteration is 
implemented to avoid a never-ending cycle.) 

An important feature is that no task settings are changed after it was processed. Every time a change 
is necessary to task settings, its exact clone is created first and the desired change is made to this 
cloned task settings instead. Therefore, a complete history of task settings evolution, together with a 
number and an exact form of found patterns is preserved in the meta-data database. It could be used 
later for investigations of steps and decisions taken during automated data mining process – either for 
debug purposes or to help with a proper interpretation of found patterns. 

The last input parameter specifies the path and name of file for the analytical report to be written into. 
In this example, a HTML report is prepared and opened in operating system default web browser. A 
manually shortened version is in Fig. 13. 

In this particular case, amount of found patterns for an analytical task Calendar, Guest, Visit implying 
Weather type was not reduced to number requested by input parameters (even after reaching an 
arbitrary limit of eight iterations of task settings changes). This failure is mentioned in the report and 
only two of found patterns are shown. Please remember also, that EverMinerSimple example is just a 
prototype with no ambition to provide real results yet. 
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8. Other Approaches 
The most popular programming language for data mining is R with 52.5 % of respondents reporting its 
usage for a data mining related task within past 12 months, according to 2012 poll results presented 
on KDnuggets.com (KDnuggets Poll, 2012). It is followed by Python (36.1 %), a general scripting 
language, and by SQL (32.1 %), a structured query language designed for relational database data 
retrieval and manipulation. Java, a general programming language, closes the top-five list with 21.2 %. 

R is a programming language and (environment) developed primary for statistical computing, see 
http://www.r-project.org/. It is an implementation of S language (Becker&Chambers, 1984). R is a 
GNU project and is supported by a large community, including the R Foundation. Its wide focus is both 
its advantage and disadvantage. LISp-Miner and LMCL is not so capable and has not so many 
different modules and add-ons but its more narrow focus and compactness makes research in the 
area of data mining automation more feasible.  

An interesting fact is a wide adoption of general programming languages for data mining analysis. We 
suppose that these general languages are involved in data import and data preprocessing phases 
where they general (or system oriented) abilities could be exploited. It is very laborious to implement 
any specialized data mining technique (like clustering or decision trees) in those languages from 
scratch. 

It has much more sense for data mining automation to step above to a higher level of abstraction and 
to use a data mining system and its features as building blocks (as LMCL allows). 

Another commonly used method of describing steps of data mining and of data flowing from one step 
to another is visualization of boxes and links among them, popularized first by the Clementine system 
(later SPSS Modeller and now IBM SPSS Modeller, see http://www.spss.com/clementine). A large 
number of data mining tools re-implemented this graphical approach, e.g. Ferda (Ralbovský, 2007), 
including the RapidMiner (http://www.rapidminer.com) system. 

There is a clear benefit of a graphical representation of any algorithm regardless of its nature – there 
were already made several attempts to replace traditional programming based on writing source-texts 
by a mouse-driven positioning of graphical boxes on desktop to visually describe underlying algorithm, 
usually called “visual programming languages” (no connection to Microsoft’s Visual XX family of 
programming language products). An example of visual programming language is Simulink 
(http://www.mathworks.com/products/simulink). The most important advantage is understandability 
and clarity of graphs with not too many nodes and links among them. Anyone could see then at glance 
the whole algorithm and could visually trace its execution. This could be suitable for beginners 
because software learning curve is steep and for relatively small problems.  

Unfortunately, this approach is not scalable. If number of nodes exceeds relatively low threshold of 10 
nodes (or there is too many links among nodes) human ability to mentally absorb information included 
in the graph rapidly decreases, (Miller, 1956). There are practical problems also with choosing a 
suitable position for each of boxes (mainly to minimize links overlapping). Finally, graphs could grow 
very large and problems emerge with parts of graph being outside the working space on screen or 
boxes on printed graph being too small when scaled to fit to size of paper. 

Despite of a higher effort and a longer time that must be spent initially to become familiar with syntax 
of chosen scripting language, the traditional approach of written source-texts makes possible to 
implement an algorithm regardless of its complexity and number of steps it includes. 

9. Summary 
The LISp-Miner Control Language is a necessary prerequisite for data mining automation in the 
EverMiner concept. But it could serve for other purposes as well. Firstly, it will be used to prepare pre-
release testing scripts of a new version of the LISp-Miner system to prove that no bugs were 
unintentionally introduced by adding a new functionality. Secondly, the scripting language will become 
a part of advanced teaching courses to allow students to better understanding of implementation 
details of data mining algorithms. They could possibly implement some add-ons or new features to 
existing LISp-Miner functionality. 
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