Aggraval, R. et al: Fast Discovery of Association Rules. In (Fayyad,
U. M. et al., eds.) Advances in Knowledge Discovery and Data Mining. AAAI
Press / The MIT Press, 1996, pp. 307–328.
Berka, P. – Ivánek, J.: Automated knowledge acquisition for
PROSPECTOR-like expert systems. In. (Bergadano, de Raedt eds.) Proc.
ECML'94, Springer 1994, pp.
339–342.
Berka, P. – Rauch, J.: Data Mining using GUHA and KEX. In
proceedings of World Multiconference on Systemics, Cybernetics and Informatics.
Red. Callaos, N. – Yang, T. – Aguilar, J. Orlando Florida 1998, pp.
238–244.
Burian, J. – Rauch, J.: Analysis of Death Causes in the STULONG Data
Set. In: BERKA, P. (ed.). Discovery Challenge. Zagreb: IRB, 2003, pp.
47–58. ISBN 953-6690-38-1.
Burian, J: Datamining and AA (Above Average) quantifier. In: SVÁTEK,
Vojtěch (ed.). Znalosti 2003. Ostrava: VŠB TU Ostrava, 2003, pp. 297–302.
ISBN 80-248-0229-5. (In Czech)
Burian, J: Unsupervised learning and the identification of
classification attribute using the attribute dependency. In: SNÁŠEL, Václav
(ed.). Znalosti 2004
– poster proceedings. Ostrava: VŠB TU, 2004, pp. 1–4. (In Czech)
Černý, Z. – Dolejší, P. – Rauch, J. – Šebek, M.:
Knowledge Discovery in Medical Data – Case Study. In: SVÁTEK,
Vojtěch. (ed.). Znalosti 2003. Ostrava: TU Ostrava, 2003, pp. 182–191.
ISBN 80-248-0229-5. (In Czech)
Flach, P. – Blockeel, H. – Gartner, T. – Grobelnik, M. –
Kavšek, B. – Kejkula, M. – Krzywania, D. – Lavrač, N. –
Ljubič, P. – Mladenič, D. – Moyle, S. – Raeymaekers, S.
– Rauch, J. – Rawles, S.: On the Road to Knowledge. In:
MLADENIC, Dunja, LAVRAČ, Nada, BOHANEC, Marko, MOYLE, Steve (ed.). Data mining
and Decision Support. Integration and Collaboration. Boston: Kluwer Academic
Publishers, 2003, pp. 143–155. ISBN 1-4020-7388-7.
Duda, R.O. – Gasching, J.E.: Model design in the Prospector consultant
system for mineral exploration. in: Michie, D. (ed.), Expert Systems in the
Micro Electronic Age, Edinburgh University Press, UK, 1979.
Dolejší, P. – Lín, V. – RAUCH, J. – Šebek, M.: System of
KDD Tasks and Results within the STULONG Project. In: BERKA, Petr (ed.).
Discovery Challenge Workshop Notes. ECML/PKDD – 2002. Helsinki: University
of Helsinki, 2002. ISBN 952-10-0639-0.
Hájek, P. – Havránek, T.: Mechanising Hypothesis Formation –
Mathematical Foundations for a General Theory. Berlin – Heidelberg
– New York, Springer-Verlag, 1978, 396 pp.
The full text of the book in PDF format is available
here.
Hájek, P. – Rauch J.: Logics and Statistics for Association Rules and
Beyond. In: ZYTKOW, Jan, RAUCH, Jan (ed.). Principles of Data Mining and
Knowledge Discovery. Berlin: Springer, 1999, pp. 586–587.
ISBN 3-540-66490-4.
Ivánek, J. – Stejskal, B.: Automatic acquisition of knowledge base
from data without expert: ESOD (Expert System from Observational Data).
In: Proc. COMPSTAT'88 Copenhagen, Physica-Verlag, 1988, pp.175–180.
Ivánek, J.: On the Correspondence between Classes of Implicational
and Equivalence Quantifiers. In Principles of Data Mining and Knowledge
Discovery. Red. Zytkow, J. – Rauch, J. Berlin, Springer Verlag 1999,
pp. 116–124
Kejkula, M.: Foundation of Interpretations of Assocional Rules.
In: SNÁŠEL, Václav (ed.). Znalosti 2004
– poster proceedings. Ostrava: VŠB TU, 2004, pp. 25–28. (In Czech)
Šimůnek,
M.: LISp-Miner Control Language – Description of scripting language
implementation. In: Journal of Systems Integration, Vol 5, No 2 (2014),
p. 28–44. ISSN 1804-2724. (download available)
Lín, V. – Rauch, J. – Svátek, V.: Contend-based Retrieval of
Analytic Reports. In: SCHROEDER, Michael, WAGNER, Gerd (ed.). Rule Markup
Languages for Business Rules on the Semantic Web. Sardinia: ISWC, 2002,
pp. 219–224.
Lín, V. – Rauch, J. – Svátek, V.: Analytic Reports from KDD:
Integration into Semantic Web. In: ISWC 2002. Cagliari: University of
Cagliari, 2002, p. 38.
Lín, V. – Rauch, J. – Svátek, V.: Mining and Querying in
Association Rule Discovery. In: KLEMETTINEN, Mika, MEO, Rosa, GIANNOTTI,
Fosca, DE RAEDT, Luc (ed.). Knowledge Discovery in Inductive Databases –
KDID '02. Helsinki: University of Helsinki, 2002, pp. 97–98.
ISBN 952-10-0638-2.
Rauch, J.: Application of three-valued logic for GUHA method. Diploma
work. Faculty of mathematics and Physics Charles University Prague, 1971 42 pp,
(in Czech).
Rauch, J.: Main Problems and Further Possibilities of the Computer
Realizations of GUHA Procedures. International Journal of Man-Machine
Studies, 15, 1981, pp. 283–287.
Rauch, J.: Logical Foundations of Hypothesis Formation from Databases,
Mathematical Institute of the Czechoslovak Academy of Sciences, Prague, Czech
Republic, PhD. thesis, 1986 (in Czech).
Rauch, J.: Logical Calculi for Knowledge Discovery in Databases.
In Principles of Data Mining and Knowledge Discovery. Red. Komorowski,
J. – Zytkow, J. Berlin, Springer Verlag 1997, pp. 47–57.
Rauch, J.: Classes of Four Fold Table Quantifiers. In Principles of
Data Mining and Knowledge Discovery. Red. Zytkow, J – Quafafou, M. Berlin,
Springer Verlag 1998, pp. 203–211.
Rauch, J.: Four-fold Table Calculi and Missing Information. In JCIS'98
Proceedings, (Paul P. Wang, editor), Association for Intelligent Machinery, pp.
375-378, 1998.
Rauch, J. – Simunek, M.: Mining for 4ft Association Rules. In
Discovery Science 2000. Red. Arikawa, S. – Morishita S. Springer Verlag
2000, pp. 268–272.
Rauch, J.: Mining for Statistical Association Rules. In The Fifth
Pacific-Asia Conference on Knowledge Discovery and Data Mining Industrial
Track and Workshop Proceeding Red. Joseph Fong ang Michael Ng Hong Kong
2001, pp. 149–158.
Rauch, J.: Association Rules and Mechanizing Hypothesis Formation.
Working notes of ECML'2001 Workshop: Machine Learning as Experimental
Philosophy of Science.
See also
http://www.informatik.uni-freiburg.de/~ml/ecmlpkdd/.
Rauch, J.: Mining for Scientific Hypotheses. In Meij, J.(Editor):
Dealing with the data flood. Mining Data, Text and Multimedia. STT/Beweton, The
Hague. 2002. pp. 73–84.
Rauch, J.: Interesting Association Rules and Multi-relational Association
Rules. Communications of Institute of Information and Computing Machinery,
Taiwan. Vol. 5, No. 2, May 2002, pp. 77–82.
Rauch, J.: Definability of Association Rules in Predicate Calculus.
In: LIN, Tsau Young, HU, Xiaohua, OHSUGA, Setsuo, LIAU, C. J. (ed.). Data
mining – Foundations and New Directions in Data Mining. Melbourne: IEEE
Computer Society, 2003, pp. 148–155.
Rauch, J. – Simunek, M.: Mining for 4ft Association Rules by
4ft-Miner. in: INAP 2001, The Proceeding of the International Conference On
Applications of Prolog. Prolog Association of Japan, Tokyo October 2001,
pp. 285–294.
Rauch, J. – Šimůnek, M.: Alternative Approach to Mining Association
Rules. In: LIN, Tsau Young, OHSUGA, Setsuo (ed.). The Foundation of Data
Mining and Knowledge Discovery (FDM02). Maebashi: Izumo, 2002,
pp. 157–162. ISBN 4-947717-02-6.
Rauch, J. – Šimůnek, M.: System LISp-Miner. In: SVÁTEK, Vojtěch
(ed.). Znalosti 2003. Ostrava: TU Ostrava, 2003, pp. 83–92.
ISBN 80-248-0229-5. (In Czech)
Rauch, J – Šimůnek, M.: Project LISp-miner – current state
and further development. In: SNÁŠEL, Václav (ed.). Znalosti 2004
– poster proceedings. Ostrava: VŠB TU, 2004, pp. 81–84. (In Czech)
Rauch, J. – Šimůnek, M. – Dolejší, P. – Lín, V.:
Data mining procedure KL-Miner.
In: SNÁŠEL, Václav (ed.). Znalosti 2004. Ostrava: VŠB TU, 2004,
pp. 350–361. ISBN 80-248-0456-5. (In Czech)
Rauch, J. – Šimůnek, M. – Lín, V.: Mining for Patterns Based on
Contingency Tables by KL-Miner – First Experience. In: LIN, Tsau
Young, HU, Xiaohua, OHSUGA, Setsuo, LIAU, C. J. (ed.). Data mining –
Foundations and New Directions in Data Mining. Melbourne: IEEE Computer Society,
2003, pp. 156–163.
Rauch, J. – Strossa, P. – Černý, Z.: Reporting Data Mining
Result in Natural Language. In: LIN, Tsau Young (ed.). Foundations and New
Directions in Data Mining: Workshop Notes. Melbourne: IEEE Computer Society,
2003, pp. 164–171.
Šimůnek, M.: Academic KDD Project LISp-Miner. In: ABRAHAM, A., FRANKE,
K., KOPPEN, K. (ed.). Advances in Soft Computing – Intelligent Systems
Desing and Applications. Heidelberg: Springer-Verlag, 2003, pp. 263–272.
ISBN 3-540-40426-0.
Svátek, V. – Štochl, J. – Rauch, J.: Matching Data Mining
Methods with MetaData and Problem Descriptions in Recommender Systems.
In: SNÁŠEL, Václav (ed.). Znalosti 2004
– poster proceedings. Ostrava: VŠB TU, 2004, pp. 65–68.
Strossa, P. – Rauch, J.: Association Rules in STULONG and Natural
Language. In: BERKA, Petr (ed.). ECML/PKDD-2002 Workshop Proceedings:
Discovery Challenge Workshop Notes, Report B-2002-8. Helsinki: Universitas
Helsingiensis, 2002. ISBN 952-10-0639-0. ISSN 1458-4786.
Strossa, P. – Rauch, J.: Converting Association Rules into Natural
Language. In: KLOPOTEK, M. A., WIERZCHON, S. T., TROJANOWSKI, K. (ed.).
IIPWM'03. Berlin: Springer, 2003, pp. 383–392. ISBN 3-540-00843-8.
Štochl, J.: Data mining in catheterization database. In: SVÁTEK,
Vojtěch (ed.). Znalosti 2003. Ostrava: TU Ostrava, 2003, pp. 192–201.
ISBN 80-248-0229-5. (In Czech)
Strossa, P.: AR2NL/STULONG: an Experiment with a Simple Natural Language
Model for Formulating Association Rules. In: SNÁŠEL, Václav (ed.).
Znalosti 2004. Ostrava: VŠB TU, 2004, pp. 210–217. ISBN 80-248-0456-5.
Zembowicz, R. – Zytkow, J.: From Contingency Tables to Various Forms
of Knowledge in Databases. in Fayyad, U. M. et al.: Advances in Knowledge
Discovery and Data Mining. AAAI Press/ The MIT Press, 1996. pp. 329–349.